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Recently, upwind differencing schemes have become very popular for solving hyperbolic 
partial differential equations, especially when discontinuities exist in the solutions. Among 
many upwind schemes successfully applied to rhe problems in gas dynamics, Roe’s method 
stands out for its relative simplicity and clarity of the underlying physical model. In this paper, 
an upwind differencing scheme of Roe-type for the MHD equations is constructed. In each 
computational cell, the problem is first linearized around some averaged state which preserves 
the flux differences. Then the solution is advanced in time by computing the wave 
contributions to the flux at the cell interfaces. One crucial task of the linearization procedure 
is the construction of a Roe matrix. For the special case >J = 2, a Roe matrix in the form of a 
mean value Jacobian is found, and for the general case, a simple averaging procedure is 
introduced. All other necessary ingredients of the construction, which include eigenvalues, and 
a complete set of right eigenvectors of the Roe matrix and decomposition coefficients are 
presented. As a numerical example, we chose a coplanar MHD Riemann problem. The 
problem is solved by the newly constructed second-order upwind scheme as well as by the 
Lax Friedrichs, the Lax-Wendroff, and the flux-corrected transport schemes. The results 
demonstrate several advantages of the upwind scheme. In this paper, we also show that the 
MHD equations are nonconvex. This is a contrast to the general belief that the fast and slow 
waves are like sound waves in the Euler equations. As a consequence, the wave structure 
becomes more complicated; for example, compound waves consisting of a shock and attached 
to it a rarefaction wave of the same family can exist in MHD. da 1988 Academic Press. Inc. 

I. INTRODUCTION 

In recent years upwind differencing schemes have become very popular for 
solving hyperbolic partial differential equations with discontinuous solutions. This 
popularity is mainly due to the robustness of the schemes, the availability of an 
underlying physical model, and their ability of achieving high resolution of 
stationary discontinuities. A general discussion of the upwind differencing schemes 
can be found in a review article by Harten, et al. [ 11. An extensive comparison 
between the upwind schemes and other numerical schemes on some two-dimen- 
sional hydrodynamical problems with strong shocks has recently been reported by 
Woodward and Colella [2]. 

In this paper an upwind differencing scheme for the equations of ideal 
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magnetohydrodynamics (MHD) is presented. The MHD equations form a non- 
strictly hyperbolic system. In one-dimensional case, the Jacobian is a 7 x 7 matri.x 
and up to 5 out of the 7 eigenvalues may coincide. In addition, as we will show in 
Section 6 of the paper, the MHD equations are nonconvex. As a consequence, the 
wave structure is more complicated than for the Euler equations. For example, one 
can have a compound wave which consists of a shock and attached to it a rarefac- 
tion wave of the same family. This is a contrast to the usual belief that the 
magnetosonic waves are like sound waves in the Euler equations. 

Because of the complexity of the MHD equations, we have constructed the 
scheme by using Roe’s linearization procedure [3]~ We have also attempted to 
apply other upwind schemes which are based on nonlinear approximations of 
the system of conservation laws, such as Godunov’s [4] or @her’s [S] schemes 
but construction becomes very involved, since the MHD Riemann problem is 
complicated and has not yet been fully resolved. 

The plan of this paper is as follows: In Section 2, MHD equations are defined. In 
Section 3, we present a brief account of Roe’s method. One critical task in his 
procedure is the construction of a Roe matrix. For the MHD equations, this is 
presented in Section 4. For the special case y = 2, we have constructed a Roe matrix 
due to the existence of a mean value Jacobian. However, for the general 7 case, we 
have not succeeded in constructing a Roe matrix. Instead. a simple averaging 
procedure is introduced. The eigenvalues, eigenvectors, and decomposition coef- 
ficients, which are necessary ingredients for the construction of the scheme, are also 
listed in this section. Since the underlying Riemann problem is linear, one has to 
have a complete set of right eigenvectors which are well defined for all values of 
parameters. In this paper a complete set of independent eigenvectors is provided. 
Section S shows some numerical experiments for a one-dimensional MHD Riemanr, 
problem. The problem is solved by using a second-order upwind scheme, and the 
results are compared with those obtained by standard difference schemes, such as 
the Lax-Friedrichs scheme, the Lax-Wendroff scheme with Lapidus-type viscosity, 
and the flux-corrected transport (FCT) scheme. The experiments indicate several 
advantages of the upwind scheme. Besides, the model problem demonstrates the 
existence of a compound wave for the MHD equations, which consists of a shock 
followed by a rarefaction wave of the same family. Also in this section, we discuss 
the solution of a high Mach number Riemann problem by the upwind scheme a.nd 
compare it with the exact analytical solution. 

In Section 6, we prove that the MHD equations are nonconvex. By using the 
complete set of right eigenvectors constructed in this paper, we will show that as 
the transverse magnetic field goes through zero, the siow (fast j characteristic field 
becomes degenerate if the sound speed is greater (less j than the ‘Alfven speed. As a 
remark, one can check that the usually used set of right eigenvectors for the 
equations, for example, those given by Jeffrey and Taniuti [6], is not complete. The 
difference between our set and theirs is in normalization. By using their set, it 
follows that fast and slow characteristic fields are genuinely nonlinear, see 
Theorem E.l in Jeffrey and Taniuti [6]. 
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II. MHD EQUATIONS 

The MHD equations characterize the flow of a conducting fluid in the presence 
of magnetic field. They represent coupling of the fluid dynamical equations with 
Maxwell’s equations of electrodynamics. By neglecting displacement current, 
electrostatic forces, effects of viscosity, resistivity, and heat conduction, one obtains 
the following ideal MHD equations [6]: 

Pt + v. CPU) = 0, (1) 

(pu),+V.(puu+ iiP* - BB)=O, (2) 

B,+V.(uB-Bu)=O, (3) 
E,+V.((E+P*)u-B(B.u))=O, (4) 

with the additional requirement that V. B = 0, which is satisfied in the initial value 
problem if it is satisfied initially. In the above equations the following notations are 
used: p for density, u for velocity, B for magnetic field, P for static pressure, P* for 
full pressure, P* = P + $1B/1’, E for energy, E = +~/lul/ 2 + P/(1’ - 1) + t[lBli ‘, and 1’ 
for the ratio of specific heats. Furthermore, we have chosen units such that factors 
of 471 and c do not appear in Eqs. (l)-(4). 

The above system is hyperbolic, its Jacobian has real eigenvalues and a complete 
set of right eigenvectors [6, 7 J. However, it is not a strictly hyperbolic system since 
the eigenvalues may coincide. (For a strictly hyperbolic system, all eigenvalues are 
distinct.) Also the system is nonconvex, since there are fields which cannot be 
characterized as either linearly degenerate or genuinely nonlinear. This will be 
discussed in Section 6. 

III. REVIEW OF ROE CONSTRUCTION 

Let us discretize space,and time as xi = i 4x and t,, = n dt, as shown in Fig. 1, and 
denote by u; a piecewise linear approximation to the exact solution of the following 
system of conservation laws: 

u, + H U), = 0, (5) 

%== t; 

xi-ii2 xi xi +m Xi+1 Xi ~312 

FIG. 1. Piecewise linear initial value problem which is integrated to advance piecewise constant 
initial data I(’ from time 1, to r,S + , 
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where U is a vector which represents the variables and F( CT) represents the flux 
vector. 

The difference approximation to (5) can be written in conservation form as 

where .I’;+ L/2 is called numerical flux. A numerical scheme in conservation form is 
called an upwind scheme if it reduces to the method of characteristics when applied 
to linear system and also satisfies the entropy condition [I]. 

Among many upwind schemes successfully applied to the hyperbolic problems 
with discontinuous solutions, Roe’s method stands out by its simplicity and clarity 
of the underlying physical model. In each computational cell the problem is 
linearized around some averaged state, so that the flux difference is preserved in 
each cell. The solution is then advanced in time by computing explicitly the wave 
contributions to the flux at the cell interfaces. This is done by solving an initial 
value problem with the step function as its initial data (Riemann problem) for the 
linear system. The time step size is restricted as usual by the CFE condition that 
waves do not travel more than one computational cell in one time step. The details 
are as follows: 

In the first step of the Roe construction, the exact system (5) is approximated in 
each computational cell (xi: .yi+ i) x (t,,, I,, + i) by a linear system 

U, i- G(U), = 0, 

where 
G(U)=F,+Ai+,,: ( CT - z?:‘), Fi = F( CT;). 

I-Iere the Roe matrix tli+,,? is such that 

(l) Fj+,--Fi=Aj+L.2(Ui+L-ur) for any Uil and Vi, ! ~ 

!2) A r+l1 has real eigenvalues and a complete set of 
right eigenvectors, 

Note that by the property (9Aj G(U) can be written equivalenrly as 

G(U)=F,+,+.4,+,,,.(L~-vl,,). (';O) 

In the second step of the construction, we solve the linear Riemann problem for 
the system (7) with the initial data defined as U; for s < .yL + 1 2 and z!;+ ! for 
X>Sitl 2. Then the flux fi+ ,;z is defined as 

fi, I:? = aci, 1.7). (11) 
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Here L’~+ ,,,z denotes the solution of the above Riemann problem at .Y = x,, riz. The 
linear Riemann problem can easily be solved by decomposing the system (7) into a 
set of uncoupled scalar linear equations. It is done by multiplying the system (7) by 
the left eigenvectors of the matrix A i+ 1,2 and solving each scalar linear equation 
exactly. 

This implies that for ~It<dx/max,,~ 116’ ‘j21, ui+1/2 is given by 

Oi+ l/2 = zri+ 
c Ci$ 1;2Rik+ 112, 

k, ik c + I ‘2 < o 

where 16’ 1:2 and R:f I’2 8 represent the eigenvalue and the corresponding eigenvector 
OfAi+1;2. Ci+ L,‘2 is the decomposition coefficient of (oi+ r - vi) in the right eigenvec- 
tor space as defined by the following relation 

vi+l- 
L7; = c ,$+ 1’2R;+ 12. 

k 

Substituting ui+ , 2 in ( 11) by expression ( 12) gives 

By property (9A), it is equivalent to 

(13) 

In the following some special properties of the Roe scheme are presented. First, 
property (9A) together with the Rankine-Hugoniot jump relations, implies that the 
speed of the discontinuity and the jump through the discontinuity are, respectively, 
some eigenvalue and eigenvector of the matrix Ai+ l;2. This implies that stationary 
discontinuities are steady solutions of the numerical scheme. Second, since the 
scheme is based on a linear decomposition of the characteristic fields, one can apply 
different numerical schemes for each field. For example, one can use artificial com- 
pression on linearly degenerate fields in order to prevent their spreading [S] or, in 
the multiple time scale problems, treat some fields implicitly, so that a larger time 
step can be used..Third, the scheme is non-oscillatory in the sense that no new 
extrema is created for the linear systems or a single nonlinear conservation law [IS]. 
The above construction gives a difference approximation of first-order accuracy and 
may admit entropy violating shocks. For practical purposes, the scheme is usually 
extended to second order with some entropy fix, see for example Harten [S] or 
Osher [9]. Also, upwind schemes can be applied on adaptive mesh [lo], and in 
non-Cartesian coordinates [9]. Extensions to multi-dimensional geometries can be 
done with or without dimensional splitting [9]. 
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We summarize the steps in constructing a Roe-type scheme: 

(1) Obtain matrix Ai+ rj2 as defined by (9A))(9C). 

(2) Compute the eigenvalues ,I:+ “* and the eigenvectors RX+ L’ of ‘4 i + i .? 

(3) Calculate decomposition coefficients CL+ ’ ‘* as defined by ( 13). 

(4) Compute fi+ 1,: and obtain $+ l by (6). 

In the next section we will show these steps in building an upwind scheme for the 
MHD equations. 

IV. ROE-TYPE SCHEME FOR THE MHD EQUATIONS 

In this section we consider one-dimensional MHD equations which are obtained 
from the system (l)-(4) by assuming that all variables depend on .Y and t only. The 
resulting equations are: 

(puj,+(pu’+P*),=O, 

(pj, + (pm - B,B,.j, = 0, 

(p~~,),+(pu,~-B,B.),=O, 

(B,.j,+(B,.u--B.~~),=O, !. 

(B,),+(B=ll-B,1\,),=0, (21) 

E,+((E+P*)u-B,(B.u+B?.z:+B=~~)).=O. (22) 

B., = const, U, 11, and ~9 are three components of the velocity field, and the rest of the 
notations are as in Section II. 

IV.1. A4atri.u Ai+ ,,? 

The Jacobian of the system (16)-( 22) is 

.~ B, B 
-L4++1 

B, -B. 

u 
* 0 u 

P P P 

-B. B 
L 11 + -2 II‘ 

B: 

u 
0 -B, 0 

P P P 
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where H= (E + P*j/p, and 

x2 = H - B;/p - (y - 1) u’, 

a3=(1-+a-BB,B,.,‘p, 

cc,=(l-y)uu-BB,B,/p, 

as = (2 - 7) B,,u - B,u, 

xg=(2--) B,u-Byw, 

For the special case y= 2, we are able to find matrix Ai+ ,.‘2 as defined by 
(9A)-(9C) in the form of A( Vi+,,2(Ui, Ui+,)), with A a Jacobian matrix for the 
system (16)--( 22) calculated at some average state V,, ,iz( Ui, Ui+ ,). In order to find 
‘I+ 1’2, one solves the following system of algebraic equations (see Eq. (9A)), 

F(“i+l)-F(Uj)=A(V~+,,2)(Uj+~-Uj), (24) 

where V’i+,.‘3(u,, L’~, . . . . v7) represents some averaged values of the components of U, 
and Ui+, . U and F are as in the system (16)-(22); namely, 

U= (~7 ~11, ~0, PIN’, B,, B,, EL 

F=(pu,p~~+P*, puo-B.,BL.,puw- B,B,, 

B,.u - B,u, B,u - B.,w, (E+ P*) u - B,(B,u + B,,L~ + B,w)), 

and A is the Jacobian matrix (23). In addition, we require Vj+ ii1 to satisfy the 
following properties: 

(1) Vi+l.2(Ui+l~ ui)= vi+~‘*(“i~ ui+lh (25A) 

(2) Vi+,c! is continuous and V, + 1!2( U, Uj = U, (25B) 

(3) Vi+ 1/z is such that eigenvalues of A( Vi+ ,:z) are real. (25C) 

Note that for the Euler equations, the matrix A,, ilz constructed by Roe using his 
parametrization technique [3] is in the form of A( V[+ ij2). If one applies the above 
procedure to the Euler equations, the resulting Vi, iIZ is unique and identical to the 
one constructed by Roe. 

There are seven equations in (24). The first equation is satisfied automatically. 
Introducing ti = L’?/L’ I, ti = v,jo, , and ii? = r&i, one can show that each of the next 
three equations represents geometrically a hyperboloid formed by revolution 
around the li axis and two hyperbolic cylinders, respectively. It can be shown that 
they intersect at two points, but only one of which satisfies properties (25B) and 
(25C). The solution obtained is identical to the solution for the Euler equations: 
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with similar expressions for I! and IF; (. ) denotes here the arithmetic average of 
values at i and if 1. Substituting them into the fifth equation of (24) gives, after 
some algebraic manipulations, 

where p* denotes the geometric average of pi and P~+~, AC= tj,+r - I’:, 
Lh=ui+,- u,. Since we are looking for a solution which is valid for all values of 
Ui,- 1 and Uj, (27) implies that 

LIL=p* (28) 

(2?! 

The next equation (number six) of (24) gives t16 similar to (29) if one replaces 
B,. Finally. the last equation of (24) is linear in l? or fi and gives 

For general one-dimensional case (7 # 2), the nonlinear algebraic system of 
Eq, (24) for variables Tfi+ 1:7 does not decouple as in the previous case (7 = Z), and 
we are not able to solve it analytically. Neither do we succeed in finding an 
appropriate parameterization as suggested by Roe [3]. Instead, we have modified 
Roe’s method by using a simple averaging scheme: A, + ,:2 is defined as a Jacobian 
aWit 2 ) with the U’i+ ,;? denoting some averaging function that satisfies proper- 
ties (25A)-(25C). One can check that the averaging method satisfies the properties 
(9B) and (SC), but not (9A). Violation of property (9A) implies that the stationary 
discontinuities are no longer steady solutions of the resulting numerical scheme, but 
as was shown in [ 111, they still can be resolved with few grid points. 

For the Euler equations and the MHD equations, if one uses an averaging 
function B’i+ L 2 such that the averaged density and the pressure have positive 
values, then all of the eigenvalues of A( W,, , 2 ) are real (property (25C)). One sim- 
ple example for W’ is to take an arithmetic averaging of the density, velocity, 
magnetic field, and full pressure. Note that if instead of averaging the full pressure. 
one averages the energy variable, it may lead to a negative averaged pressure which 
is not allowed. 

iV.2. Eigencalues of the Jacobian A 

The eigenvalues can be written in nondecreasing order as 
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where c,-, c,, c, are the fast, the Alfven, and the slow characteristic speeds, respec- 
tively. They can be expressed as 

ci=b;, (32) 

c~;.=~((u*)~*J~~), (33) 

with the notations 

6, = B.&I)‘~‘, b,, = By/b j li2, 6, = B;/(p)“‘“, 

6’ = 6; + b; + b,z, (a*)’ = (yp + B2)/p 

and a is the sound speed which is given by 

a’ = ypplp. 

In Eq. (33) the plus sign is for the cY and minus sign for the c,. 
There are two points where these eigenvalues may coincide: 

(1) At B, = 0, c, = c, = 0, thus u is an eigenvalue of multiplicity 5. 
(2) At Bt + B? = 0, cj = max(a2, bf), and cf = min(a2, b:). Therefore, for the 

case uZ # b2,, either c> = 6: or cz = bf, thus multiplicity of u f c, is 2; and for the case 
a2 = b:, c: = cf = bz and the multiplicity of u + C, is 3. 

IV.3. Eigenvectors of A 

In order to carry out Roe’s linearization procedure, one requires the matrix A to 
have a complete set of right eigenvectors, so that it can be diagonalized and then 
one can proceed with the construction from Eq. (7) to Eq. (12). The following set of 
right eigenvectors is given by Jeffrey and Taniuti [3] 

R u+r= 

r 

: 

u - 
\ 

1 

U&C 

L’ f 
B&c 

p(c2 - b;) 

11: T 
B, B;c 

,o( c2 - b;) 

B,, c2 
p(c2 - bZ,) 

B,c2 
,o(c2 - b;) 

2 + v2 + iv2 
2 +i 

R u+r,= 

0 

0 

T Bz sgn(B,) 

+ B,, sgn(B,) 

B=jp I,” 

g 

R,= 

1 

u 

V 

II’ 

0 

0 

M2 + v2 + IV2 

2 d 

(34) 
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where c is either cf or c,, and h and g are defined as 

ii=-+f 

B,c(B,.u + B-w) i’- 2 

p(c’-b2) +--&c-‘-a’), 

r I! 

g= + (B,uT B,.w) sgn(B,). 

However, near the points where either B, = 0 or B; -I- Bz = 0, this set is not well 
defined and the matrix with these eigenvectors as its columns becomes singular. We 
construct a complete set by renormalizing the above eigenvectors. To find the nor- 
malizing factors, we examine the behavior of the eigenvectors (34) near these points. 

(1) At B., = 0, the slow eigenvectors include expressions B,cj(cf - bt) and 
c$‘(ci - bz) which are of the form O/O. This singularity can be removed by using the 
following identities: 

For example, 

b,.k a c:-b’ 
c;-b; 

X sgn( B,) b,., 
c,,- bf + 61 

b,,cf a2 b,. cj-bt 
Pl;.2(cf-b;j= -7 pl.?F; 

(37) 

(38j 

At B, = 0, the slow eigenvectors can be defined as limiting values of B, -+ 0. Since 
we have a pair of slow eigenvectors, Rue,, and R, +LI, the resulting set is indepen- 
dent of whether B, -+ O+ or B, + Op. We choose to define sgn(B, E 0) = 1 in (37). 

(2) As bf; + bf approaches zero, the terms involving B,.,/(c’- b:) an 
B=/(c’- b:) may tend to infinity. They also are not defined at the points where 
55 + b: = 0 for the fast eigenvectors in the case a2 <b: or the slow eigenvectors in 
the case a’> b-t or both eigenvectors in the case a2 = b:. Furthermore, the deter- 
minant of the matrix with the eigenvectors (34) as its columns is proportional to 
(cj - c:)~ which will tend to zero if both 6: + bZ and u2 - bz approach zero. 

To examine the behavior of the eigenvectors (34) near these points, it is con- 
venient to introduce the following variables for bf + hi # 0: 
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(41) 

,llz= , B= 
&+61’ 

(42 1 

In these variables the expressions of the form (37), (38) for the slow eigenvectors, 
and similar expressions for the fast eigenvectors, are multiples of ~JcY,~ and a,/~,, 
respectively. The determinant of the matrix with these eigenvectors as its columns is 
proportional to (b:+ b~)/(c#cr~). Therefore, by multiplying the fast, slow, and 
Alfvtn eigenvectors in (34) by o[~, Us, and ljdw, respectively, we obtain a set 
of right eigenvectors which is well defined everywhere. For example, multiplication 
of expressions (37) and (38) by CY, gives 

(43 1 

(44) 

At points where Bz + Bf = 0, we define p’s as some limiting values of (41 t(42), i.e., 

if Bf + BY = 0. (45) 

Similarly, for Cos, we define 

CQ-= 1, lx,= 1, if B.5 + Bf = 0 and a’-b:=O. (46) 

Note that with the above normalization either B,.c/(c2 - 6;) or B,c/(c’- bf) are 
not continuous as both B,. and B, approach zero. For them to be continuous, one 
can multiply slow (if a2> b:) or fast (if a’< bfj eigenvectors by the sign of the 
transverse magnetic field, which we define as 1, if B, > 0 or both Br = 0 and B, > 0, 
and - 1, if B., < 0 or both B,. = 0 and B, < 0. This step is not important for the Roe 
construction since the difference is only in the sign of the eigenvectors. On the other 
hand, as we will show in Section 6, it is crucial to have continuous fast (if a2 < b2) 
and slow (if a2 > bt) eigenvectors for the proper classification of the MHD charac- 
teristic fields. 

lV.4. Decomposition Coefficients 

Decomposition coefficients C,‘s are obtained by solving directly the following 
system of linear equations: 

u If1 _ ui=c C;+L2R;+L’2. 
k 

(47) 
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Define 

then the system decouples as follows. 
The second, third, and fifth equations of (47) form the following system of 

equations for d4, d, , and d, : 

“fCf arc, 

-I?, aA(;~ &a, wW& 
-Bra.>b.c,r Pzax w(B,)lcf 

-bzsin,d.)) (I) =P* (ii, 
Py w(B,) 

where a’s and p’s are defined by (39)--(42) and Au = u;+ I - zii, etc. The equations 
number four, six, and seven of (47) contain only d,, d,, and d,: 

By solving (51) and (52), we obtain the d’s. Then we obtain C, from the first 
equation of (47), 

C, = Ap - a-rd, - a,d?, 

and the rest of the coefficients from (48~(50). 

V. NUMERICAL EXAMPLE 

For the numerical example, we choose a coplanar MHD Riemann problem, 
which is an initial value problem with the initial data consisting of two constant 
states Ii, and U,. In our case, the initial left and right states are, respectively, p, = 1, 
uI = 0, L’, = 0, p, = 1, (B,), = 1; and pr = 0.125. u, = 0, P, = 0, pr = 0.1, (BY), = - I. Sn 
addition, B, 3 0.75 and ;’ = 2. Note that the initial hydrodynamical data used here 
are identical to those in Sod’s shock tube problem 1121. 
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Numerical solutions which were obtained for 800 grid points with Ax = 1 and 
At = 0.2 (CFL- 0.8) are shown after 400 time steps unless specified otherwise. 
Initial discontinuity is located in the middle of the computational interval. The 
problem was solved by several numerical schemes including the newly constructed 
second-order Roe-type scheme, which was extended to second order by Harten’s 
approach [S], the Lax-Friedrichs scheme [13], the Lax-Wendroff scheme with 
Lapidus-type viscosity [14]-[15], and the FCT scheme [16]. 

Figure 2 shows the results for the second-order upwind scheme using the Roe 
matrix in the form of A(V) with V given by (26) and (28)-(30). The solution con- 
sists of the following waves separated by constant states. The waves moving to the 
left are a fast rarefaction wave, denoted by FR in the figure, and a slow compound 
wave, denoted by SM. The waves moving to the right include a contact discon- 
tinuity, denoted by C, a slow shock (SS), and a fast rarefaction wave, FR. The 
solution was checked by calculating Riemann invariants across the rarefaction 

X 

FIG. 2. Second-order upwind scheme. 
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waves and Rankine-Hugoniot jump conditions across the shock waves. The 
existence of a compound wave is due to the nonconvexity of the MHD equations 
and will be discussed in the next section. 

We have also solved the problem by another second-order upwind scheme, where 
simple arithmetic averages of the density, velocity, full pressure, and magnetic Field 
were used in constructing A i+ I,2 in (14 j in the form of A( B’( Ui, Ui+ J j as discussed 
in Section 4. The constant states obtained by this scheme and the ones obtained in 
the previous case are constant up to 4 significant digits, and they are the same for 
both schemes. In the transition regions the two schemes agree up to 2 significant 
digits. 

Figure 3 represents the results for the two-step Lax-Wendroff scheme with 
Lapidus-type viscosity. There is an undershoot at the tail of the rarefaction wave. 
The shock is resolved with 4-5 transition points. Oscillations occur between fast 
rarefaction and slow compound wave, and between slow compound wave and a 

FIG. 3, Lax-Wendroff scheme with Lapidus-type viscosity. 



414 BRIO AND WU 

contact. The contact discontinuity is resolved with 10-15 points. There is a slight 
overshoot at the right moving slow shock which is resolved with 5-8 points. 

We have also tried to use the Lax-Wendroff scheme for the Riemann problem 
with the data identical to the above, except (B,,), = -0.4. For this case, the solution 
obtained by the upwind scheme or the Lax-Friedrichs scheme contains an almost 
stationary slow intermediate shock where the magnetic field changes its sign. 
However, with the Lax-Wendroff scheme we were not able to make numerical 
solutions stable with any value of artificial viscosity. 

Figure 4 shows the results obtained by the first-order Lax-Friedrichs scheme. At 
the time shown the constant states between the left moving fast rarefaction and the 
slow compound wave, and between the contact and the right moving slow shock 
are not yet realized. The slow shock is smeared by about 20 transition points. In 
order to demonstrate convergence of the Lax-Friedrichs scheme to the same 
solution as the one obtained by the second-order schemes, we have increased the 
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FIG. 4. Lax-Friedrichs scheme. 
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number of the grid points and the number of the time steps up to 20,000 and 
10.000, respectively. The results are shown in Fig. 5. When drawn on the same 
scale, they coincide with the results obtained by the second-order upwind schemes, 
except the contact is resolved sharper by the upwind schemes. This may be due to 
the fact that in the upwind scheme, artificial compression was applied for the 
linearly degenerate field. 

Figure 6 shows the results for the FCT method [I?‘] after 800 time steps with 
At = 0.1. The CFL number used in the calculation is about 0.4, as suggested in [I?]. 
(Even a smaller CFL number does not improve the results.) There is an undershoot 
at the tail of the rarefaction wave and at the contact discontinuity. 0scillation.s 
cover the constant states between the contact and the compound wave and between 
the slow and the fast waves moving to the right. The discontinuities are resolved 
sharply with few transition points. The same case, when run with CFL number 0.8, 

FIG. 5. Lax-Friedrichs scheme with 20,000 points and after 10.000 time steps. 
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increases drastically the oscillations between the left and the right-moving slow 
waves and also produces oscillations near the right-moving fast rarefaction wave. 

In order to demonstrate the robustness of the upwind scheme for high Mach 
number problems, we have solved the same Riemann problem as above, but B, E 0 
and p, = 1000. The problem becomes a standard hydrodynamical Riemann problem 
if one replaces the plasma pressure by the sum of the plasma and the magnetic 
pressures. The exact solution (continuous line) and the numerical solution (dotted 
line) are shown in Fig. 7. The Mach number corresponding to the right-moving 
shock wave is 15.5. The amount of artificial compression used at the tangential 
discontinuity as prescribed by Harten [S] does not prevent the tangential 
discontinuity from spreading. On the other hand, artificial compression together 
with the second-order correction term causes the undershoot in the density profile 
near the tangential discontinuity. This undershoot diffuses in time. 

P 

P 

FIG. 6. FCT scheme. 
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FIG. 7. High Mach number Riemann problem by second-order upwind scheme. 

VI. NONCONVEXITY OF THE MHD EQUATIONS 

In this section, using the complete set of right eigenvectors constructed in Sec- 
tion 3, we will prove that the MHD equations are nonconvex. The following ter- 
minology is used: A pair (A,, Rk) is called the kth characteristic field where iii and 
R, represent the kth eigenvalue and the corresponding eigenvector of the Jacobian 
matrix. As first shown by Bazer and Ericson [18], for a given left state the jump 
relations can be resolved for the right state and the shock speed by using the trans- 
verse magnetic field as a parameter. This one-parameter famiiy of right states which 
can be connected by a shock to a given left state is called a shock curve. Following 
Lax [ 131, the kth characteristic field is called genuinely nonlinear if the appropriate 
eigenvalue is monotonic along the shock curve 

= (V,,U . R, # 0, 

where E is the parameter along the shock curve. A characteristic field such that 
(V,J,) . R, = 0 identically along the shock curve is called linearly degenerate, For 
example, sound waves in Euler equations represent genuinely nonlinear fields and 
the contact discontinuity represents a linearly degenerate field. Such systems of 
conservation laws, such as Euler equations, with all of the characteristic fields being 
either genuinely nonlinear or linearly degenerate are called convex. 

Using the set of right eigenvectors constructed in Section 3, (VA). R is propor- 
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tional to B,. near BY=0 for the MHD fast wave if C? < 62, and the slow wave if 
a’ > bt. (We assume here that Br = 0 since MHD shocks are coplanar.) Thus these 
fields, whose (VA). R is zero at one point where B,. = 0 and nonzero elsewhere, are 
neither linearly degenerate nor genuinely nonlinear. Therefore, the MHD system is 
nonconvex! (Note that by using the set of right eigenvectors (34) as given, it follows 
that (Vi). R is nonzero for both slow and fast waves and that they are genuinely 
nonlinear, see Jeffrey and Taniuti [6]. But this conclusion is not correct, since the 
set (34) is not complete.) 

Nonconvexity can also be derived from the direct approach used by Bazer and 
Ericson (18) to study the variations of different quantities along the shock curve by 
using (B,.), as a parameter. In particular, they showed that the fast (slow) eigen- 
value curve will intersect the shock speed (s) curve if a2 < bf (a*> bz), and 
ds/d(B,),=O at the intersection point. To illustrate this approach, consider the 
following simple example. Assume the transverse magnetic field to be small, (B,,), is 
given and (B,.), is a parameter along the shock curve. Without loss of generality, we 
can set p, = 1, U, = 0, B, = 1, and consider a case with 1’ = 2, p, = 1. Expanding the 
Rankine-Hugoniot jump relations using (B1.), as a parameter [lS], we obtain 

s = _ 1 + (B,,): + (B,MB,h + . 

4 .‘, (55) 

and A,= -l+$(B,)t+ ..., and (B,)f < (B,,):. This implies that both A, and s 
curves intersect at (B,), = - (B,,),/2, and ds/d(B,,),=O at this point. Also, since 
the shock speed is equal to the characteristic speed at the intersection point, a 
rarefaction wave can be attached to a shock there. 

FIG. 8. Dependence of the shock (3) and the slow characteristic speeds (2,) on the variable (B,),. 
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FIG. 9. Slow compound wave (x-component of velocity j. The continuous line shows the pos:tion of 
the slow shock and attached to it rarefaction wave obtained by resolving the Rankine-Hugoniot jxxp 
relations and the Riemann invariants. The dotted line denotes values obtained from the numerical 
calculation. 

To illustrate the global behavior of the eigenvalue along the shock curve, we con- 
sider the compound wave in the first numerical example of the previous section. 
Using the numerical data for the left state with respect to the slow shock 
(p =0.6763, u=O.6366, LJ= -0.2333, B,,==0.5849, p =0.4574), we have resolved 
jump relations using (B,.), as a parameter. The dependence of the shock speed (s) 
and the slow characteristic speed (U - c,) with respect to (B,.), is shown in Fig. 8 for 
the entropy nondecreasing shocks. Point (6) denotes the intersection of these two 
curves. The values of the variables at the intersection point are as follows: 
p=O.7935, u=O.4983, o= -1.290, B,.= -0.3073, p=O.6687, and s= -0.2995. 

The portion of the solution containing the compound wave of a slow shock (SS) 
and attached to it a rarefaction wave (SR) is shown in Fig. 9 for the 14 variable. The 
continuous line in the figure represents an analytical solution of the compound 
wave in which the rarefaction wave is obtained through Riemann invariants with 
the head of the rarefaction wave specified at the intersection point. Then the values 
at the tail of the rarefaction are as follows: p = 0.6965, u = 0.5987, u = - 1.583. 
B, = -0.5341, and p=O.5157. For comparison, the values at the tail obtained 
numerically by the second-order upwind scheme as shown with the dotted line in 
the figure are p = 0.6963, u = 0.5997, ~1 = - 1.578, B,. = -0.5341, and p = 0.5133. ‘The 
agreement is excellent. 

The relationship between the shock speed (s) and the characteristic speeds (2) for 
the different points a, b, c, and d on the shock curve in Fig. 8 is illustrated in the 
(x. I) diagrams in Fig. 10. The first case (a) illustrates the shock with convergent. 
slow characteristics and is similar to the shocks encountered for the Euler equations 
which correspond to genuinely nonlinear fields. In the second case (b), the right 
slow characteristic speed is equal to the shock speed. This allows for a rarefaction 
wave to be attached to such a shock as in the compound wave considered in the 
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(b) x,=s< xf 

(cl s< A,< A, (dl s< A,= xl 

FIG. 10. Relationship between the shock (s) and the slow characteristic speeds [A) for the different 
points along the shock curve in Fig. 8. 

above numerical example. Case (c) shows a shock having a divergent slow charac- 
teristic on the right-hand side. In this case, two waves of the same family can travel 
in the same direction without one being overtaken by another. The last diagram (d) 
shows a particular case of the previous one in which the characteristic speed is 
constant across the shock. It corresponds to a 180” Alfven wave, namely, density, 
pressure, x-component of the velocity are constant across the shock and the 
transverse magnetic field reverses its sign. 

Note that since By changes its sign across the slow shock in the compound wave, 
the shock is an intermediate shock. If we believe in the usual argument that MHD 
intermediate shocks are not admissible [6, 191, then we may conclude that all 
numerical schemes tested in Section 5 admit nonphysical shocks. This would be a 
serious problem in numerical magnetohyrodynamics. However, contrary to this 
belief, it has recently been shown by numerical solutions of resistive MHD 
equations that at least some types of intermediate shocks, including the one here, 
can exist [20]. Specifically, it was shown that some intermediate shocks can be 
created by a steepening process from a continuous wave. 

VII. DISCUSSION AND CONCLUSION 

In this paper we have shown a procedure to construct a Roe-type upwind dif- 
ferencing scheme for the one-dimensional MHD equations. Numerical experiments 
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demonstrate that the scheme has several advantages in comparison with the stan- 
dard schemes, such as nonoscillatory behavior, and high resolution of discon- 
tinuities. In addition, based on our experience with a Roe scheme, either for the 
Euler equation or the MHD equations, the scheme is nonlinearly stable. Since there 
are multiple time scales in MHD, one may have a further advantage to use the 
upwind scheme. Because the scheme is based on linear decomposition of charac- 
teristic fields, one can treat each field separately. In the case that the short time 
scale phenomenon is not important, one can modify the scheme by slowing down 
the fast characteristic speeds explicitly or treating it implicitly, so that a large time 
step size can be used. 

Although the upwind scheme for the MHD equations is a straightforward exten- 
sion of the scheme for the Euler equations. The construction is quite involved. The 
scheme requires about 10 times more floating point operations per grid point per 
time step than the Lax-Wendroff scheme. However, because of its many advantages 
over other schemes, the effort is worthwhile in some cases. Due to its high 
resolution of discontinuities, one can use the upwind scheme with fewer grid points. 
For example, in the first numerical example in Section 5, one can use the upwind 
scheme with 200 grid points instead of 800 points and still obtain a reasonable 
result. By using 260 grid points and thus reducing the number of time steps by 4. 
the upwind wind scheme becomes more efficient than the Lax-Wendroff scheme 
with 800 grid points. Most importantly, since the upwind scheme does not produce 
non-physical oscillations, it is easier to understand the computational results. For 
example? the nonconvexity of the MHD equations was first discovered by using the 
upwind scheme for the first numerical example in the paper. With the Lax-Wen- 
droff scheme or the FCT scheme, one could have trouble identifying the compound 
wave in the solution, because of the numerical oscillation; for the Lax-Friedrichs 
scheme, it requires too many grid points. 

In the paper, we have also proved rigorously the nonconvex property by using 
our complete set of right eigenvectors. One consequence is that compound waves 
can exist in MHD. Since it is only now that we know that the MHD equations are 
nonconvex, further research is required to clarify their solutions and their relations 
to various admissibility criteria. 
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